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In this paper, a method is presented for predicting the three-dimensional dynamic
response, shear stresses and structural intensity of torsional vibration in a "nite shaft with
stepped cross-sections. The series expansion techniques is employed to express the dynamic
responses and shear stresses in terms of the eigenfunctions of torsional vibration in uniform
cylindrical rods. The coe$cients of the series are determined by enforcing the boundary
conditions through the least-squares "tting. The e!ectiveness of this proposed method is
assessed and illustrated by numerical results. The numerical results also revealed the
characteristics of dynamic response, shear stresses and intensity vector "elds in a "nite
stepped shaft and showed that the application of the one-dimensional torsional vibration
theory to a "nite stepped shaft not only misses out radial modal responses, but also results in
a large error for the prediction of responses of axial modes when the resonance frequencies of
all the segments (in free}free end conditions) do not coincide.

( 2000 Academic Press
1. INTRODUCTION

Shafts including stepped shafts are elements of many practical engineering struct-
ures. Torsional vibration problems often arise in these elements and they are usually
analyzed based on one-dimensional mathematical models [1]. However, one-dimensional
mathematical models can only give approximate results [2, 3] and the approximation error
increases with increasing frequency. At low frequencies where the velocities of elements in
a given cross-section of a shaft are all in the same (tangential) direction and their
magnitudes are proportional to the radius, the one-dimensional model is a good
approximation. At medium and high frequencies where the torsional wavelengths are
comparable with or smaller than the radius of a shaft, radial vibrational modes are present
and the accurate analysis of torsional vibration in a shaft should be made based on
three-dimensional mathematical models because the tangential displacement in any
cross-section of the shaft may not be a linear function of radius, and one or more radial
layers may rotate in opposite direction to that of the core of the shaft.

A number of researchers have used three-dimensional methods to study the torsion
vibration in shaft [2}8]. Leissa and So [2] used the three-dimensional Ritz analysis to
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estimate the resonance frequencies of "nite shafts and concluded that a three-dimensional
mathematical model is required to obtain an accurate estimation of natural frequencies.
Pan and Pan [3] studied the structural intensity of torsional vibration in uniform shafts and
demonstrated the torsional energy #ow features at medium and high frequencies where
an one-dimensional mathematical model is in error. Johnson et al. [4] used
a three-dimensional mathematical model to look at the trapped torsional modes in
a stepped shaft of three segments. Tsuji and Kim [5}8] utilized three-dimensional methods
to analyze the stress "eld of in"nite stepped shafts and showed stress singularity phenomena
cannot be explained by using the one-dimensional torsional vibration theory. In reference
[8], the tangential displacement and shear stresses of a stepped shaft with two semi-in"nite
solid cylindrical rods are expressed in terms of Dini series [9]. The Dini-series coe$cients
are then determined using the boundary conditions at the stepped joint. The advantage of
this approach manifests itself in concise formulation and in actual numerical calculation
e$ciency because it involves no numerical integration.

Practical shafts are all "nite and could be of a large cross-section or consists of several
segments with di!erent radii. The study of torsional vibration in such stepped shaft may
provide a understanding of the characteristics of torsional modes in complex structures
and an information for machinery vibration and noise control. In this paper, a
three-dimensional method is proposed for obtaining numerical solutions of torsional
response, shear stresses and structural intensity in a stepped shaft with two segments for the
excitation of a pure torsional moment due to axial symmetrical surface forces. The
similarity of this proposed method and the method developed in reference [8] is that in both
methods the expressions of tangential displacement and shear stresses are analytic (in terms
of Dini series, the exact eigenfunctions of torsion vibration in uniform cylindrical rods) and
have no integration terms. The di!erence is that in this proposed method the Dini
coe$cients are obtained by directly applying the method of least squares [10] to "t the
boundary conditions at the stepped joint. This proposed method is readily extended to the
case where a stepped shaft consists of several segments of di!erent radii and has di!erent
boundary conditions.

2. TORSIONAL VIBRATION IN A STEPPED SHAFT

We consider a stepped shaft which consists of two uniform solid cylindrical rods
(segments) of di!erent "nite lengths and diameters. The axis of the stepped shaft is lying
along the z-axis of a cylindrical co-ordinate system (r, h, z), as shown in Figure 1. The radii
and lengths of the two segments are denoted by R

1
, R

2
(R

1
'R

2
), ¸

1
and ¸

2
respectively.

The stepped shaft is assumed to have free}free end conditions. An axial-symmetrically
distributed surface force, H

0
ejut, is assumed to act on the left end of the shaft (z"0) in the

tangential direction resulting in a harmonic torque M
0
ejut:

M
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(r) ds, (1)

where ds"rdrdh. For this type of excitation, only torsional waves are present in the shaft
[3]. Due to the circular cross-sections, the tangential displacements in segments 1 and 2 of
the shaft should be independent of h and can be expressed respectively as [2, 3]
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Figure 1. A shaft with two cross-sections and the corresponding co-ordinates.
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where
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are the eigenvalues in the radial direction satisfying the eigenequations:
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) is the complex shear modulus and g
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is the dissipation

loss factor of segment i. The coe$cients A(i)
0
, A(i)

1
,2 and B(i)
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, B(i)

1
,2 in equation (2) are

determined by the boundary conditions at the two ends of each segment. For the stepped
shaft shown in Figure 1, the boundary conditions can be written as the following four
equations:
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where H
1
(r) and H

2
(r) are the internal shear forces at the stepped joint in the tangential

direction. The force equilibrium at the stepped joint requires H
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Substituting equation (2) into equations (5)}(8) gives
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(n"1,2,3,2 ) are the modal moments and given by the
following integrals:
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The internal shear forces H
1
(r) and H

2
(r) can be expanded in Fourier}Bessel series:
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where c(i)
0
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1
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2
,2 are the Fourier}Bessel coe$cients of the internal shear force H
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(r).

Substituting the above equation into equations (12) and (13) and using the orthogonal
property of the functions Mr, J
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By using the above relationships, equations (9) and (10) can be simpli"ed as
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The Fourier}Bessel coe$cients can be determined from the boundary conditions at the
stepped joint (z"¸

1
) where the displacement continuity and force equilibrium must be

satis"ed. That is
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Substituting equations (16) and (17) into the above equations gives
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where the coe$cients c(i)
n

(i"1,2; n"1, 2, 3,2 ) can be approximately estimated using the
method of least squares. By using the method of least squares, equations (21)}(23) are
satis"ed only at a limit number of locations. If (P#Q#2) coe$cients, c(1)
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where S is the maximum number of base functions used in the calculation of tangential
displacement in segment I. The coe$cient matrix [D] in equation (24) has an order of
(2M#N)](P#Q#2) and its elements are given by
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If the coe$cient matrix [D] is singular, the least-squares solution of equation (24) can be
expressed as

[c]"([D]T [D])~1 [D]T [d]. (27)
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Substituting the above solution into equations (16) and (17) gives the torsional response of
the stepped shaft. Then the internal shear stresses can also be calculated [3].

3. STRUCTURAL INTENSITY OF TORSIONAL VIBRATION

Structural intensity vector I"[I
r
, Ih, I

z
]T in an elastic structure is de"ned as [11, 12]
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where p
r
,2, q

zh are the stress components in the structure and superscript * denotes
complex conjugate. For the case of pure moment excitation, the radial and axial
displacement components are equal to zero (u"w"0) [3].

q
rh"G A

Lv

Lr
!

v

rB, ph"0, q
zh"G

Lv

Lz
. (29)

Combining equations (28) and (29) gives
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The shear stresses in segments 1 and 2 of the stepped shaft can be calculated using equations
(16), (17) and (29):
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Substituting equations (16), (17) and (31)}(34) into equation (30) gives the structural
intensities in segments 1 and 2 of the stepped shaft.

4. NUMERICAL RESULTS AND DISCUSSIONS

A numerical example is presented in this section to assess the feasibility of the method
described and also to illustrate the characteristics of dynamical response, shear stress and
structural intensity "elds of torsional vibration in a stepped shaft. The stepped shaft is
assumed to be made of mild steel and has free}free end conditions. R

1
"0)5 m,

R
2
"0)25 m, ¸

1
"1)0 m, ¸

2
"0)5 m. The dissipation loss factors of both segments are

assumed to be the same of 0)001. The left end of the stepped shaft (z"0) is excited by an
external torque of unit magnitude (M

0
"1 Nm) which resulted from a distributive surface



Figure 2. Magnitudes of the tangential displacements calculated at position of (r, z)"(0)2 m, 0)2 m): (a) using
three-dimensional torsional vibration theory for the stepped shaft (===) and for uniform shafts (- - - - - :
(¸, R)"(1)0 m, 0)5 m); } } -: (¸, R)"(0)5 m, 0)25 m)); (b) using three-dimensional torsional vibration theory
(===) and one-dimensional torsional vibration theory (} } - ) respectively in the stepped shaft.
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force. Numerical results showed that in a stepped shaft both the shear stresses and velocity
"elds are independent of the external excitation force function (that is, the expression of
H

0
(r) which may be proportional to r or rn (n'1)). This is di!erent from the case of uniform

shafts [3]. The reason is that the internal forces at the stepped joint are always non-uniform
regardless of the type of external excitation force. In our calculations, a cubically distributed
external surface force (H

0
(r)"3r3/nR6

1
) was assumed.

Figure 2 shows the magnitudes of tangential displacements v
1

at position of (r, z)"
(0)2 m, 0)2m) in the stepped shaft and uniform shafts (¸, R)"(1)0 m, 0)5 m) and (0)5 m,
0)25 m)) respectively. Figure 2(a) is used to illustrate the relationship between the coupled
system (stepped shaft) and the uncoupled systems (the segments) in terms of their resonance
frequencies. It was found that when the resonance frequencies of the axial modes of the
two-segments coincide, the stepped shaft "nds its resonance. If the resonance e frequencies
of the two segments do not coincide, the resonance frequency of the stepped shaft shifts



Figure 3. Magnitudes of the tangential displacement at position of (r, z)"(0)2 m, 0)2 m) in the stepped shaft
calculated using the three-dimensional torsional vibration theory (===) and using the "nite element methods
(- - - - - - -).
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away from that of the uncoupled segments. Figure 2(b) shows that the one-dimensional
torsional vibration theory not only misses out the resonance frequencies of radial modes,
but also results in a large error for the prediction of resonance frequencies of axial modes in
a stepped shaft when the resonance frequencies of the two segments (in free}free end
conditions) do not coincide. This is di!erent from the case of uniform shafts where the
prediction error for using one-dimensional torsional vibration theory is negligible [2].

To assess the accuracy of the present method, the "nite element method (FEM)
(MSC/Nastran 7)07) was used to calculate the displacement response of the stepped shaft in
the low-frequency range (the high-frequency calculation has been prevented by the required
mesh size and number of elements). The results from FEM and the present method are
compared in Figure 3. The comparison shows a reasonable accuracy of the present method.

It is shown in equations (16), (17) and (31)}(34) that both shear stresses and tangential
displacement are the sum of in"nite terms. The numerical calculation, however, can only
include a "nite number of terms. Also the use of the method of least squares can only make
the boundary conditions be exactly satis"ed at a "nite number of locations. Therefore, this
proposed method is theoretically an approximate numerical method. The approximate
error is a function of the base function and "tting location numbers. Figures 4 and 5 show
the magnitude values of tangential displacements and shear stresses q

zh at di!erent
resonance frequencies for di!erent base function and "tting location numbers (S and M)
respectively. During the calculations, P"Q"S and M"N (because R

1
"2R

2
) were used.

The frequency of f"3218 Hz is the third resonance frequency of the stepped shaft and it
coincides with the second symmetric axial modal frequency of segment 1 and the "rst
antisymmetric axial modal frequency of segment 2. The frequency of f"5310 and 5652 Hz
are the "fth and sixth resonance frequencies of the stepped shaft and at which the symmetric
and antisymmetric radial modes are respectively present in segment 1. It can be seen that
the approximation error depends on frequency. If the resonance frequency of stepped shaft
coincides with the resonance frequencies of both segments, an accurate calculation can be
made by using small numbers of base functions and "tting locations (both S and M are
small). Otherwise (even for axial modes), more base functions and "tting locations are
required. The required numbers of base functions and "tting location are di!erent at
di!erent resonance frequencies. The numerical results also showed that at non-resonance



Figure 4. Magnitudes of tangential displacements (a) and shear stresses q
zh (b) at the resonance frequencies of

f"3218 Hz (]), 5310 Hz (O), 5652 Hz (*) on the position of (r, z)"(0)2m, 0)2 m) in the stepped shaft.
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frequencies accurate results can be obtained by using small numbers of base functions and
"tting locations.

Figures 6 and 7 shows the contour plots of two-dimensional displacements and shear
stresses q

zh at the resonance frequencies of f"3218 and 8876 Hz respectively. Since the
displacement and shear stress distribution are independent of h, these contour plots give the
vibration patterns for any lateral cross-section of the stepped shaft. At f"3218 Hz, the
stepped shaft vibrates in an axial mode and the vibration pattern can be predicted with
a negligible error using one-dimensional torsional vibration theory. At f"8876 Hzz, the
vibration pattern is complicated and its analyses must be made using three-dimensional
torsional vibration theory.

Figures 8 and 9 show the structure intensity vector "elds at resonance frequencies of
f"3218 and 8876 Hz. It can be seen that the structural intensity is not uniformly
distributed in the radial direction. Most input power is dissipated in segment 1. This is
because the stepped shaft is in free}free end conditions and the two segments have the same



Figure 5. Magnitudes of tangential displacements (a) and shear stresses q
zh (b) at the resonance frequencies of

f"3218 Hz (]), 5310 Hz (O), 5652 Hz (*) on the position of (r, z)"(0)2m, 0)2 m) in the stepped shaft.
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dissipation loss factors. For an axial vibration mode ( f"3218 Hz), the radial intensity
component is very smaller than the axial one at the all the locations and the structural
intensity vector is in a simple distribute pattern. For a radial vibration mode ( f"8876 Hz),
intensity vortices are present in the intensity vector "eld. These two "gures indicate that the
prediction of structural intensity distribution at any frequency in a stepped shaft must be
made based on a three-dimensional mathematical model.

5. CONCLUSIONS

In this paper, a method is outlined for calculating the dynamic response and shear
stresses of torsional vibration in three-dimensional stepped shafts. By using the
eigenfunctions of torsional vibration in uniform cylindrical rods as the base functions and
applying the method of least squares to the boundary conditions, this method is able to



Figure 6. Magnitude contours of the displacements (a, dB re 1]10~12 m) and shear stresses q
zh (b, dB re 1 N) in

the stepped shaft at the resonance frequency of f"3218 Hz.
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provide detail and accurate information of the dynamic response, shear stresses and
structural intensity in three-dimensional "nite stepped shafts. Although in this paper only
a stepped shaft of two "nite cylindrical rods with free}free end conditions is taken as an
example, this proposed method can be easily applied to the stepped shafts consisting of
many "nite cylindrical rods or having other boundary conditions.

Work in progress includes the study of stress concentration near the stepped joint [13]
and experimental veri"cation.
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Figure 7. Magnitude contours of the displacement (a, dB re 1]10~12 m) and shear stress q
zh (b, dB re 1 N) in

the stepped shaft at the resonance frequency of f"8876 Hz.

Figure 8. Structural intensity vector "eld at the resonance frequency of f"3218 Hz.
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Figure 9. Structural intensity vector "eld at the resonance frequency of f"8876 Hz.
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